Algorithms for Data
Structures:
Heuristic Search

Phillip Smith
20/11/13

AIMS

* Once you've understood this you should be able to:
 Explain the idea of a heuristic
* Devise simple heuristics

* Carry out best-first search, hill climbing and A*
search

Heuristics

So far we've looked at strategies for searching when we know very little about the
problem

Heuristics are rules of thumb:
* Approximate
e Quick to compute
e Not guaranteed to work

Informed (or heuristic) search uses rules of thumb to guide search and cut down
the amount of work we have to do

Heuristics are used throughout Al

We will go through a heuristic estimate of the distance (or cost) between the
current state and the goal state

Example Reuristic:
Estimate of distance to go

e Consider the 8-puzzle tile sliding game:

* Goal state: 1o | 3
8 4
7 6 5

* Which of the following is closer to the goal?

State A

or

State B

One heuristic is to count the number of tiles our of place:

H(A) = 4

A(B) = 2

H is our heuristic estimate of the actual number of moves left

Hill Climbing

How can we use our heuristic estimate of the
distance to a goal state?

In steepest-ascent hill climbing we generate the
children of the current state

We calculate the heuristic value of each
Then select the one with the ‘best’ heuristic value

Repeat until you can't improve

Hill Climbing Example

-

I
1
Ol

Hill Climbing Gets Stuck

e Often hill climbing will reach a point where it can't
improve further:

2 8 | 8
1 4 H=3
7 6 5

* Thisis an example of a plateau

* There is no efficient way to cross a large plateau if
there is (by definition) no information to guide the
search

Hill Climbing Gets Stuck

* Hill climbing can also get stuck on local maxima (or
minima it we're doing gradient descent)

 We can see this in the 8-puzzle example if we
change the heuristic:

e Heuristic 2 ho: for each tile add its vertical anad
horizontal displacement from its desired position.
Sum these values across all the tiles.

Hill Climbing Gets Stuck

3 3
24 h=1+143=5

3 8 3 8
2 2
=0 ho =06

no

Best-First Search

« Remember the complete search tree you've explored so
far (as in breadth-first search)

 But use H (evaluation function) to decide which leaf node
to expand next, instead of path cost

e A venerable, but inaccurate name

* |f we really could choose the best node to expand, then
it wouldn't really be a search at all

e All we can do is choose the ‘best’ according to an
evaluation function

Best-First Search

@)

Best-First Search

A* Search

To obtain better searching we need to take into account
the cost of the path so far

g(A) = cost (length) of the path from the root node to node
A

H(A) = heuristic estimate of the cost (length) of the path
from node A to a goal state

I(A) = g(A) + H(A)

f(A) is an estimate of the total cost of the path through A
that starts at the root node and ends in the goal node

A* Search: Examp\e

m.

\EI

2 8
1 ©
f=1+5 /
f=2+3
2 8
/1
f=3+3

A* Search: Example

/w

GOAL, woohoo!

Inventing Heuristics

H and h, are fairly good heuristics, but how do we invent one which

IS possibly better?

s it possible for a machine to create such a heuristic?

Composite heuristic

o Uses whichever currently defined heuristic returns the best result

Statistical information:

 Run our search 100 times and examine patterns

« When ho(n) = 14, it turns out that 90% of the time the real
distance to the goal is 18. We can therefore us 18 as the real

value when 14 is returned

Search: the story so far...

 We've seen:
* depth-first (depth-limited, DFID)
e preadth-first
e best-first with H
* pest-first with f (A* search)
* \We can unity all these (mostly) into a single framework

* We can do this using the idea of an agenda

Agenda Based Search

* |n all our algorithms we have to choose which leaf node
INn the search tree to expand

 We can split the nodes into two lists:
 OPEN =D E C]-nodes to expand (leaf)

e CLOSED =[AB]-nodes already expanded (internal)

Agenda Based Search

e Suppose we reorder the nodes in OPEN according to
some criterion”?

e e.g reorder by depth of node in tree
e deepest first (depth-first search)
« OPEN=[DEC]
* shallowest first (breadth-first search) /N

« OPEN=[CDE] ~ 72

Agenda Based Search

* We then:
— * Expand the first node in OPEN
e putitin CLOSED

e put its children in OPEN

— o reorder OPEN

* (NB to obtain depth-first search we also need to
delete nodes from CLOSED when we backtrack)

Agenda Based Search

We can also implement best-first search in this way

If we reorder OPEN by H then we have best-first search as
described in the last lecture

This is actually called greedy search

Best-first search using H to reorder OPEN = greedy search
Best-first search using g to reorder OPEN = uniform cost search
Best-first search using f = g + H to reorder OPEN = A* search

NB if g is just the depth of the node in the tree then uniform cost
search = breadth-first search

Agenda Based Search:

Example
2 8
1 6 f=0+4

2
:

-

f=2+3 f=24113 f=3+4

2 8
[/
f=3+3 f=3+14

~N O OO

f=1+5

f=1+5 f=1+5
/ Q‘
G
f:2+‘3/ f_0 41 f 3+4
l OPEN (B D F G H |
H | g (1 1 2 2 3 3
f=3+3 H (5 5 3 4 3 4

Agenda Based Search:

Example

f= O+4

/

[T~
|

f=3+4

Agenda Based Search:
Example

f=0+4

f=1+5 f=1+5

f:2+‘3/ on f=34+4

OPEN (B D F G H |
- | g (1 1 2 2 3 3
f=3+3 - (5 5 3 4 3 4
f=3+4
Uniform cost: reorder by g

Agenda Based Search:
Example

f= O+4

A
— T T

f=14+5 B C)
l
F

f=1+5
f=1+3

/\

f=2+j/// on f=34+4

OPEN= (F H G | B D)
H | g= (2 3 2 3 1 1)
f=3+3 H= (3 3 4 4 5 5)
f=3+4
Greedy search: reorder by H

Example
A f=0+4
f=14+5 . - ° f=1+5
£ F G
f:2+7 s f=3+4
l OPEN= (F B D G H |)
| g= (2 1t 1 2 3 3)
f=3+3 H= (3 5 5 4 3 4)
f=3+4 ~
A* search: reorder by f = g + H

Agenda Based Search:

summary

Heuristic evaluations of cost to reach goal
Hill climbing

Best-first search

A* Search

Agenda-based search

