
Algorithms for Data
Structures:

Heuristic Search

Phillip Smith
20/11/13

Aims

• Once you’ve understood this you should be able to:

• Explain the idea of a heuristic

• Devise simple heuristics

• Carry out best-first search, hill climbing and A*
search

Heuristics
• So far we’ve looked at strategies for searching when we know very little about the

problem

• Heuristics are rules of thumb:

• Approximate

• Quick to compute

• Not guaranteed to work

• Informed (or heuristic) search uses rules of thumb to guide search and cut down
the amount of work we have to do

• Heuristics are used throughout AI

• We will go through a heuristic estimate of the distance (or cost) between the
current state and the goal state

Example Heuristic:
Estimate of distance to go

• Consider the 8-puzzle tile sliding game:

• Goal state:

!

!

• Which of the following is closer to the goal?

1 2 3

8 4

7 6 5

2 8 3

1 6 4

7 5

1 2 3

8 6 4

7 5

or ?

State A State B

• One heuristic is to count the number of tiles our of place:

• Ĥ(A) = 4 Ĥ(B) = 2

• Ĥ is our heuristic estimate of the actual number of moves left

• H(A) = 5 H(B) = 2

!

Hill Climbing
• How can we use our heuristic estimate of the

distance to a goal state?

• In steepest-ascent hill climbing we generate the
children of the current state

• We calculate the heuristic value of each

• Then select the one with the ‘best’ heuristic value

• Repeat until you can’t improve

Hill Climbing Example
2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

Ĥ = 4

Ĥ = 3 Ĥ = 5 Ĥ = 5

Hill Climbing Gets Stuck
• Often hill climbing will reach a point where it can’t

improve further:
2 8 3

1 4

7 6 5

Ĥ = 3

• This is an example of a plateau

• There is no efficient way to cross a large plateau if
there is (by definition) no information to guide the
search

Hill Climbing Gets Stuck
• Hill climbing can also get stuck on local maxima (or

minima if we’re doing gradient descent)

• We can see this in the 8-puzzle example if we
change the heuristic:

• Heuristic 2 h2: for each tile add its vertical and
horizontal displacement from its desired position.
Sum these values across all the tiles.

Hill Climbing Gets Stuck
1 3 8

2 4

7 6 5

3 8

1 2 4

7 6 5

h2 = 1 + 1 + 3 = 5

h2 = 6 h2 = 6 h2 = 6

1 3 8

2 4

7 6 5

1 3 8

7 2 4

6 5

Best-First Search
• Remember the complete search tree you’ve explored so

far (as in breadth-first search)

• But use Ĥ (evaluation function) to decide which leaf node
to expand next, instead of path cost

• A venerable, but inaccurate name

• If we really could choose the best node to expand, then
it wouldn’t really be a search at all

• All we can do is choose the ‘best’ according to an
evaluation function

Best-First Search
2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

Ĥ = 4

Ĥ = 5 Ĥ = 3 Ĥ = 5

Best-First Search

2 8 3
1 4
7 6 5

2 8 3
1 6 4

7 5

2 8 3
1 6 4
7 5

2 8 3
1 6 4
7 5

2 3
1 8 4
7 6 5

2 8 3
1 4

7 6 5

2 8 3
1 4
7 6 5

2 8 3
7 1 4

6 5

8 3
2 1 4
7 6 5

Ĥ = 4

Ĥ = 5 Ĥ = 3 Ĥ = 5

Ĥ = 3Ĥ = 3 Ĥ = 4

Ĥ = 3 Ĥ = 4
We can still wander aimlessly however…

A* Search
• To obtain better searching we need to take into account

the cost of the path so far

• g(A) = cost (length) of the path from the root node to node
A

• Ĥ(A) = heuristic estimate of the cost (length) of the path
from node A to a goal state

• f(A) = g(A) + Ĥ(A)

• f(A) is an estimate of the total cost of the path through A
that starts at the root node and ends in the goal node

A* Search: Example

2 8 3
1 4
7 6 5

2 8 3
1 6 4

7 5

2 8 3
1 6 4
7 5

2 8 3
1 6 4
7 5

2 3
1 8 4
7 6 5

2 8 3
1 4

7 6 5

2 8 3
1 4
7 6 5

2 8 3
7 1 4

6 5

8 3
2 1 4
7 6 5

f = 0 + 4

f = 1 + 5 f = 1 + 3 f = 1 + 5

f = 2 + 3f = 2 + 3 f = 2 + 4

f = 3 + 3 f = 3 + 4

2 3
1 8 4
7 6 5

2 3
1 8 4
7 6 5f = 3 + 2 f = 3 + 4

A* Search: Example
2 3

1 8 4
7 6 5 f = 3 + 2

1 2 3
7 8 4

6 5

1 2 3
8 4
7 6 5

1 2 3
8 4

7 6 5 f = 4 + 1

f = 5 + 2f = 5 + 0

GOAL, woohoo!

Inventing Heuristics
• Ĥ and h2 are fairly good heuristics, but how do we invent one which

is possibly better?
• Is it possible for a machine to create such a heuristic?
• Composite heuristic

• Uses whichever currently defined heuristic returns the best result
• Statistical information:

• Run our search 100 times and examine patterns
• When h2(n) = 14, it turns out that 90% of the time the real

distance to the goal is 18. We can therefore us 18 as the real
value when 14 is returned

Search: the story so far…
• We’ve seen:

• depth-first (depth-limited, DFID)

• breadth-first

• best-first with Ĥ

• best-first with f (A* search)

• We can unify all these (mostly) into a single framework

• We can do this using the idea of an agenda

Agenda Based Search
• In all our algorithms we have to choose which leaf node

in the search tree to expand

!

!

• We can split the nodes into two lists:

• OPEN = [D E C] - nodes to expand (leaf)

• CLOSED = [A B] - nodes already expanded (internal)

A

B C

ED

Agenda Based Search
• Suppose we reorder the nodes in OPEN according to

some criterion?

• e.g reorder by depth of node in tree

• deepest first (depth-first search)

• OPEN = [D E C]

• shallowest first (breadth-first search)

• OPEN = [C D E]

A

B C

ED

Agenda Based Search
• We then:

• Expand the first node in OPEN

• put it in CLOSED

• put its children in OPEN

• reorder OPEN

• (NB to obtain depth-first search we also need to
delete nodes from CLOSED when we backtrack)

Agenda Based Search
• We can also implement best-first search in this way

• If we reorder OPEN by Ĥ then we have best-first search as
described in the last lecture

• This is actually called greedy search

• Best-first search using Ĥ to reorder OPEN = greedy search

• Best-first search using g to reorder OPEN = uniform cost search

• Best-first search using f = g + Ĥ to reorder OPEN = A* search

• NB if g is just the depth of the node in the tree then uniform cost
search = breadth-first search

Agenda Based Search:
Example

2 8 3
1 4
7 6 5

2 8 3
1 6 4

7 5

2 8 3
1 6 4
7 5

2 8 3
1 6 4
7 5

2 3
1 8 4
7 6 5

2 8 3
1 4

7 6 5

2 8 3
1 4
7 6 5

2 8 3
7 1 4

6 5

8 3
2 1 4
7 6 5

f = 0 + 4

f = 1 + 5 f = 1 + 3 f = 1 + 5

f = 2 + 3f = 2 + 3 f = 3 + 4

f = 3 + 3 f = 3 + 4

Agenda Based Search:
Example

f = 0 + 4

f = 1 + 5
f = 1 + 3

f = 1 + 5

f = 2 + 3f = 2 + 3 f = 3 + 4

f = 3 + 3
f = 3 + 4

A

DCB

GFE

IH
OPEN (B D F G H I)

g (1 1 2 2 3 3)
Ĥ (5 5 3 4 3 4)

Agenda Based Search:
Example

f = 0 + 4

f = 1 + 5
f = 1 + 3

f = 1 + 5

f = 2 + 3f = 2 + 3 f = 3 + 4

f = 3 + 3
f = 3 + 4

A

DCB

GFE

IH
OPEN (B D F G H I)

g (1 1 2 2 3 3)
Ĥ (5 5 3 4 3 4)

Uniform cost: reorder by g

Agenda Based Search:
Example

f = 0 + 4

f = 1 + 5
f = 1 + 3

f = 1 + 5

f = 2 + 3f = 2 + 3 f = 3 + 4

f = 3 + 3
f = 3 + 4

A

DCB

GFE

IH
OPEN = (F H G I B D)

g = (2 3 2 3 1 1)
Ĥ = (3 3 4 4 5 5)

Greedy search: reorder by Ĥ

Agenda Based Search:
Example

f = 0 + 4

f = 1 + 5
f = 1 + 3

f = 1 + 5

f = 2 + 3f = 2 + 3 f = 3 + 4

f = 3 + 3
f = 3 + 4

A

DCB

GFE

IH
OPEN = (F B D G H I)

g = (2 1 1 2 3 3)
Ĥ = (3 5 5 4 3 4)

A* search: reorder by f = g + Ĥ

Summary
• Heuristic evaluations of cost to reach goal

• Hill climbing

• Best-first search

• A* Search

• Agenda-based search

