

JDBC Tutorial

Phil Smith
P.Smith.7@cs.bham.ac.uk

17th October 2012

mailto:P.Smith.7@cs.bham.ac.uk

Tutorial Outline

 Setting up a VPN
 Using the Java Database Connectivity

(JDBC) API
 PostgreSQL JDBC Driver
 Requesting a connection
 JDBC URLs
 Statement Objects
 Statement Methods

Setting up a VPN

 The SoCS database servers cannot be
accessed externally

 But, your program should run as though it
were internal to SoCS

 dbteach is the School's database server
 dbteach can be accessed via VPN
 Supportweb have compiled setup guides

for most OS's
− https://supportweb.cs.bham.ac.uk/remote_access/vpn/

Using the JDBC API

 The JDBC API makes it possible to do
three things:

− Connect to a database or access any tabular data
source

− Send SQL statements

− Process the results
 “JDBC hides the complexity of many data access tasks, doing

most of the "heavy lifting"for the programmer behind the
scenes.”¹

¹http://www.oracle.com/technetwork/java/overview-141217.html

PostgreSQL JDBC Driver

 Needed to programatically access your
database!

 Download from here:
− http://jdbc.postgresql.org/download.html

 Add to your classpath

 Add as a library to your IDE of choice:

 Netbeans / Eclipse?

http://jdbc.postgresql.org/download.html

Registering the Driver

 We need to load the JDBC driver before
we can use it

 Implicitly load driver:
 Class.forName(“org.postgresql.Driver”);

 Pass parameters to JVM:
 java -Djdbc.drivers=org.postgresql.Driver ClassYouWantToRun

 This lets the JDBC know which particular
driver to use:

− MySQL, PostgreSQL ….

Requesting a Connection

 A database is represented by a URL
(Uniform Resource Locator)

 In PostgreSQL, it takes one of 3 forms:
− jdbc:postgresql:database

− jdbc:postgresql://host/database

− jdbc:postgresql://host:port/database

 The host is the name of the server

− Default is localhost
 The port is the portnumber that the server is listening on

 The database is, well... the database.

URL for dbteach

 Externally:
− jdbc:postgresql://dbteach.cs.bham.ac.uk/<db-name>

 Internally:
− jdbc:postgresql://dbteach/<db-name>

Requesting a Connection

 Use the JDBC to get Connection instance
 Use DriverManager.getConnection();

Connection db = DriverManager.getConnection(

url, username, password);

Issuing a Query

 Two main objects:
− Statement

− PreparedStatement

 Once these have been instantiated, a query can
be issued

 This will return a ResultSet object
 A Statement can be used as many times as you

want – but only one ResultSet may exist
 You should close these once finished

Simple Query - Statement
Statement st = db.createStatement();

ResultSet rs = st.executeQuery("SELECT * FROM books
WHERE date = 2013");

while (rs.next()) {

 System.out.print("First column returned ");

 System.out.println(rs.getString(1));

}

rs.close();

st.close();

Simple Query – PreparedStatement
int year= 2000;

PreparedStatement st = db.prepareStatement("SELECT * FROM books
WHERE date = ?");

st.setInt(1, year);

ResultSet rs = st.executeQuery();

while (rs.next()) {

 System.out.print("First column returned ");

 System.out.println(rs.getString(1));

}

rs.close();

st.close();

ResultSet
 Before reading any values, next(); must be called
 A ResultSet should be closed once you have

finished using it
 Once you make a new query with the existing

ResultSet, the currently open ResultSet is lost

Performing Updates
 Use the executeUpdate(); method to:

– Insert

– Delete

– Update
 This doesn't return a ResultSet
 It returns an integer, representing the number of

rows effected

Deleting Rows

int year = 500;

PreparedStatement st = db.prepareStatement("DELETE
FROM books WHERE date = ?");

st.setInt(1, year);

int rowsDeleted = st.executeUpdate();

System.out.println(rowsDeleted + " rows deleted");

st.close();

Creating a table - Serial
 Want to automatically increment that ID?
 Use the Serial keyword in your statement String:

CREATE TABLE person (

 id SERIAL,

 name TEXT

);

Dropping a table

Statement st = db.createStatement();

st.execute("DROP TABLE books");

st.close();

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

