

JDBC Tutorial

Phil Smith
P.Smith.7@cs.bham.ac.uk

17th October 2012

mailto:P.Smith.7@cs.bham.ac.uk

Tutorial Outline

 Setting up a VPN
 Using the Java Database Connectivity

(JDBC) API
 PostgreSQL JDBC Driver
 Requesting a connection
 JDBC URLs
 Statement Objects
 Statement Methods

Setting up a VPN

 The SoCS database servers cannot be
accessed externally

 But, your program should run as though it
were internal to SoCS

 dbteach is the School's database server
 dbteach can be accessed via VPN
 Supportweb have compiled setup guides

for most OS's
− https://supportweb.cs.bham.ac.uk/remote_access/vpn/

Using the JDBC API

 The JDBC API makes it possible to do
three things:

− Connect to a database or access any tabular data
source

− Send SQL statements

− Process the results
 “JDBC hides the complexity of many data access tasks, doing

most of the "heavy lifting"for the programmer behind the
scenes.”¹

¹http://www.oracle.com/technetwork/java/overview-141217.html

PostgreSQL JDBC Driver

 Needed to programatically access your
database!

 Download from here:
− http://jdbc.postgresql.org/download.html

 Add to your classpath

 Add as a library to your IDE of choice:

 Netbeans / Eclipse?

http://jdbc.postgresql.org/download.html

Registering the Driver

 We need to load the JDBC driver before
we can use it

 Implicitly load driver:
 Class.forName(“org.postgresql.Driver”);

 Pass parameters to JVM:
 java -Djdbc.drivers=org.postgresql.Driver ClassYouWantToRun

 This lets the JDBC know which particular
driver to use:

− MySQL, PostgreSQL ….

Requesting a Connection

 A database is represented by a URL
(Uniform Resource Locator)

 In PostgreSQL, it takes one of 3 forms:
− jdbc:postgresql:database

− jdbc:postgresql://host/database

− jdbc:postgresql://host:port/database

 The host is the name of the server

− Default is localhost
 The port is the portnumber that the server is listening on

 The database is, well... the database.

URL for dbteach

 Externally:
− jdbc:postgresql://dbteach.cs.bham.ac.uk/<db-name>

 Internally:
− jdbc:postgresql://dbteach/<db-name>

Requesting a Connection

 Use the JDBC to get Connection instance
 Use DriverManager.getConnection();

Connection db = DriverManager.getConnection(

url, username, password);

Issuing a Query

 Two main objects:
− Statement

− PreparedStatement

 Once these have been instantiated, a query can
be issued

 This will return a ResultSet object
 A Statement can be used as many times as you

want – but only one ResultSet may exist
 You should close these once finished

Simple Query - Statement
Statement st = db.createStatement();

ResultSet rs = st.executeQuery("SELECT * FROM books
WHERE date = 2013");

while (rs.next()) {

 System.out.print("First column returned ");

 System.out.println(rs.getString(1));

}

rs.close();

st.close();

Simple Query – PreparedStatement
int year= 2000;

PreparedStatement st = db.prepareStatement("SELECT * FROM books
WHERE date = ?");

st.setInt(1, year);

ResultSet rs = st.executeQuery();

while (rs.next()) {

 System.out.print("First column returned ");

 System.out.println(rs.getString(1));

}

rs.close();

st.close();

ResultSet
 Before reading any values, next(); must be called
 A ResultSet should be closed once you have

finished using it
 Once you make a new query with the existing

ResultSet, the currently open ResultSet is lost

Performing Updates
 Use the executeUpdate(); method to:

– Insert

– Delete

– Update
 This doesn't return a ResultSet
 It returns an integer, representing the number of

rows effected

Deleting Rows

int year = 500;

PreparedStatement st = db.prepareStatement("DELETE
FROM books WHERE date = ?");

st.setInt(1, year);

int rowsDeleted = st.executeUpdate();

System.out.println(rowsDeleted + " rows deleted");

st.close();

Creating a table - Serial
 Want to automatically increment that ID?
 Use the Serial keyword in your statement String:

CREATE TABLE person (

 id SERIAL,

 name TEXT

);

Dropping a table

Statement st = db.createStatement();

st.execute("DROP TABLE books");

st.close();

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

