

I/O and Parsing Tutorial
22-02-13

Structure of tutorial

1.Example program to access and write to an
XML file

2.Example usage of JFlex

Tasks program

● Program to help people plan and manage their
work on a project

● Task class used to represent tasks that a user
needs to complete

● Tasks have a description and priority
● Task objects should be written to an XML file
● The XML file should be read and parsed into a

human readable format

JDOM

● This program will work with XML files
● We want to write tasks to an XML file
● We want to read tasks from an XML file
● JDOM library is perfect for this
● Interoperates with the Standard API for XML

(SAX)
● Interoperates with the Document Object Model

(DOM)
● Download from http://jdom.org

Structure of program - main

● Searches for an argument stating where the
tasks should be written to i.e tasks.xml

● Creates an ArrayList of Task objects
● Saves to XML file
● Clears ArrayList
● Loads tasks from XML file
● Prints these out

Structure of method - saveToXML

● Takes an ArrayList and XML file as parameters
● Builds up structure of XML file
● Validates the structure of the XML file using a

DTD called tasks.dtd
● For each task

– Create an element

– Set its description

– Set its priority as an attribute

– Append the element to the end of the XML structure

Structure of method - saveToXML

● Format the XML using a pretty format
● Output the XML to the XML file defined in the

method's argument
● Print the XML tree to System.out

Structure of method - loadFromXML

● Parameters are an ArrayList and an XML file
● Creates a SAXBuilder to parse the XML

document
● Set up a document to receive the in-memory

XML file
– readdoc = builder.build(xmlfile);

● Get the root element
● Get the children of the root and put in a list
● Create new task objects using element text and

attributes

Task Class

● Description and priority are private String fields
● Constructor initializes fields
● toString() returns a human readable version of

the task
● Getters for the fields

JFlex

Lexing

● JFlex is a lexer
● A lexer breaks a stream of characters that can

be read from a file into easier to manage
streams of tokens

● Java tokens are typically an object representing
an integer of a token type

● Token name – INT
● Token value – 1

Lexing

● Lexers are useful for parsers
● Less objects to deal with:

– 12 tokens instead of 20 characters

● Tokens contain useful information
● A lexer describes the patterns that can make a

token of a particular type using a regular
expression

JFlex
● Writing a lexer is tedious
● Lexer generators help overcome this
● These generate lexer code for you
● JFlex is a lexer generator

– http://jflex.de

● Download and add the .jar to your classpath
– Linux: Setenv CLASSPATH /path-to-jflex/jflex.jar

– Windows(add to PATH): Control Panel – System –
Advanced – Environment Variables

– Add ;/path-to-jflex/bin

http://jflex.de/

Setting up JFlex – Windows

● In bin/ jflex.bat has to be editted:
– JFLEX_HOME must be set to the location where

JFlex is installed

– JAVA_HOME must also be set to the location where
you have installed your JDK

JFlex

● Turn a JFlex specification file into a lexer java
class:
– java JFlex.Main lcalc.flex

● Lexer has two constructors:
– One for a Reader object

– One for an InputStream object

● Tokens from the Lexer are accessed by the
next_token method

● Tokens are defined in sym.java
● End of file returns token sym.EOF

Running JFlex

● In the directory with your .flex file run:
– jflex lcalc.flex

● Or

– Java Jflex.Main lcalc.flex

● This will create Lexer.java
● Ensure sym.java is present and compiled
● Compile Lexer.java

– javac lexer.java

Structure of lcalc.flex

● %class Lexer tells JFlex to give the generated
class the name ``Lexer'' and to write the code to
a file ``Lexer.java''.

● %cup switches to CUP compatibility mode to
interface with a CUP generated parser.

Structure of lcalc.flex

● %line switches line counting on (the current line
number can be accessed via the variable
yyline)

● %column switches column counting on (current
column is accessed via yycolumn)

● %unicode defines the set of characters the
scanner will work on. For scanning text files,
%unicode should always be used.

Structure of lcalc.jflex

● The code included in %{...%} is copied verbatim
into the generated lexer class source.

● Here you can declare member variables and
functions that are used inside scanner actions.

● We define the symbol methods here with
positional information

Structure of lcalc.flex - macros

● The specification continues with macro
declarations.

● Macros are abbreviations for regular
expressions, used to make lexical specifications
easier to read and understand.

● A macro declaration consists of a macro
identifier followed by =, then followed by the
regular expression it represents.

● This regular expression may itself contain
macro usages.

Structure of lcalc.flex - macros

● LineTerminator stands for the regular
expression that matches an ASCII CR, an
ASCII LF or an CR followed by LF.

● WhiteSpace stands for the white space
character

● dec_int_lit stands for an integer
● dec_int_id is the ID representing this integer

Structure of lcalc.flex – lexical rules

● These outline actions that are taken when the
scanner matches the associated regular
expression

● The scanner keeps track of all characters in
order to match a regular expression

● Lexical states can also be checked for
● These act like a start condition
● YYINITIAL is predefined
● This is the state that the lexer begins scanning

Regular Expressions

● These are specific patterns that provide a
flexible way to match strings of characters.

● In lcalc.flex:
– dec_int_lit = 0 | [1-9][0-9]*

– This regular expression matches:

– 0 or (or is the | symbol)

– The digit 1,2,3,4,5,6,7,8,9 followed by the possibility
of 1-9 repeated any number of times

Regular Expressions

– dec_int_id = [A-Za-z_][A-Za-z_0-9]*

– Matches:

– Alphabetic characters followed by “_”

– Possibly followed by any combination of
alphanumeric characters including an underscore

– e.g “s_sc_b”

Structure of lcalc.flex – lexical rules

● <YYINITIAL> {

 ";" { return symbol(sym.SEMI); }
● This matches the semi-colon input symbol only

if the scanner is in its start state “YYINITIAL”
● When the symbol is matched, the scanner

function returns the CUP symbol sym.SEMI

JFlex and CUP

● Download CUP .jar
– http://www2.cs.tum.edu/projects/cup/java-cup-11a.jar

● To compile a CUP file:
– java -jar /location-of-jar/java-cup-11a.jar file.cup

● This will create
– parser.java

– sym.java

● Then compile them using
– javac parser.java

– javac sym.java

http://www2.cs.tum.edu/projects/cup/java-cup-11a.jar

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

