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Structure of tutorial

1.Example program to access and write to an 
XML file

2.Example usage of JFlex



  

Tasks program

● Program to help people plan and manage their 
work on a project

● Task class used to represent tasks that a user 
needs to complete

● Tasks have a description and priority
● Task objects should be written to an XML file
● The XML file should be read and parsed into a 

human readable format



  

JDOM

● This program will work with XML files
● We want to write tasks to an XML file
● We want to read tasks from an XML file
● JDOM library is perfect for this
● Interoperates with the Standard API for XML 

(SAX) 
● Interoperates with the Document Object Model 

(DOM)
● Download from http://jdom.org



  



  

Structure of program - main

● Searches for an argument stating where the 
tasks should be written to i.e tasks.xml

● Creates an ArrayList of Task objects
● Saves to XML file
● Clears ArrayList
● Loads tasks from XML file
● Prints these out



  

Structure of method - saveToXML

● Takes an ArrayList and XML file as parameters
● Builds up structure of XML file
● Validates the structure of the XML file using a 

DTD called tasks.dtd
● For each task

– Create an element

– Set its description

– Set its priority as an attribute

– Append the element to the end of the XML structure



  

Structure of method - saveToXML

● Format the XML using a pretty format
● Output the XML to the XML file defined in the 

method's argument
● Print the XML tree to System.out



  

Structure of method - loadFromXML

● Parameters are an ArrayList and an XML file
● Creates a SAXBuilder to parse the XML 

document
● Set up a document to receive the in-memory 

XML file
– readdoc = builder.build(xmlfile);

●  Get the root element
● Get the children of the root and put in a list
● Create new task objects using element text and 

attributes



  

Task Class

● Description and priority are private String fields
● Constructor initializes fields
● toString() returns a human readable version of 

the task
● Getters for the fields



  

JFlex



  

Lexing

● JFlex is a lexer
● A lexer breaks a stream of characters that can 

be read from a file into easier to manage 
streams of tokens

● Java tokens are typically an object representing 
an integer of a token type

● Token name – INT
● Token value – 1



  

Lexing

● Lexers are useful for parsers
● Less objects to deal with:

– 12 tokens instead of 20 characters

● Tokens contain useful information
● A lexer describes the patterns that can make a 

token of a particular type using a regular 
expression



  

JFlex
● Writing a lexer is tedious
● Lexer generators help overcome this
● These generate lexer code for you
● JFlex is a lexer generator

– http://jflex.de

● Download and add the .jar to your classpath
– Linux: Setenv CLASSPATH /path-to-jflex/jflex.jar

– Windows(add to PATH): Control Panel – System – 
Advanced – Environment Variables

– Add ;/path-to-jflex/bin

http://jflex.de/


  

Setting up JFlex – Windows

● In bin/ jflex.bat has to be editted:
– JFLEX_HOME must be set to the location where 

JFlex is installed

– JAVA_HOME must also be set to the location where 
you have installed your JDK



  

JFlex

● Turn a JFlex specification file into a lexer java 
class:
– java JFlex.Main lcalc.flex

● Lexer has two constructors:
– One for a Reader object

– One for an InputStream object

● Tokens from the Lexer are accessed by the 
next_token method

● Tokens are defined in sym.java
● End of file returns token sym.EOF  



  

Running JFlex

● In the directory with your .flex file run:
– jflex lcalc.flex

● Or

– Java Jflex.Main lcalc.flex

● This will create Lexer.java
● Ensure sym.java is present and compiled
● Compile Lexer.java

– javac lexer.java



  

Structure of lcalc.flex

● %class Lexer tells JFlex to give the generated 
class the name ``Lexer'' and to write the code to 
a file ``Lexer.java''.

● %cup switches to CUP compatibility mode to 
interface with a CUP generated parser.



  

Structure of lcalc.flex

● %line switches line counting on (the current line 
number can be accessed via the variable 
yyline)

● %column switches column counting on (current 
column is accessed via yycolumn)

● %unicode defines the set of characters the 
scanner will work on. For scanning text files, 
%unicode should always be used. 



  

Structure of lcalc.jflex

● The code included in %{...%} is copied verbatim 
into the generated lexer class source.

●  Here you can declare member variables and 
functions that are used inside scanner actions.

● We define the symbol methods here with 
positional information 



  

Structure of lcalc.flex - macros

● The specification continues with macro 
declarations. 

● Macros are abbreviations for regular 
expressions, used to make lexical specifications 
easier to read and understand. 

● A macro declaration consists of a macro 
identifier followed by =, then followed by the 
regular expression it represents. 

● This regular expression may itself contain 
macro usages.



  

Structure of lcalc.flex - macros

● LineTerminator stands for the regular 
expression that matches an ASCII CR, an 
ASCII LF or an CR followed by LF.

● WhiteSpace stands for the white space 
character

● dec_int_lit stands for an integer
● dec_int_id is the ID representing this integer



  

Structure of lcalc.flex – lexical rules

● These outline actions that are taken when the 
scanner matches the associated regular 
expression

● The scanner keeps track of all characters in 
order to match a regular expression

● Lexical states can also be checked for
● These act like a start condition
● YYINITIAL is predefined
● This is the state that the lexer begins scanning



  

Regular Expressions

● These are specific patterns that provide a 
flexible way to match strings of characters.

● In lcalc.flex:
– dec_int_lit = 0 | [1-9][0-9]*

– This regular expression matches:

– 0 or (or is the | symbol)

– The digit 1,2,3,4,5,6,7,8,9 followed by the possibility 
of 1-9 repeated any number of times



  

Regular Expressions

– dec_int_id = [A-Za-z_][A-Za-z_0-9]*

– Matches:

– Alphabetic characters followed by “_”

– Possibly followed by any combination of 
alphanumeric characters including an underscore

– e.g “s_sc_b”



  

Structure of lcalc.flex – lexical rules

● <YYINITIAL> {

   

   ";"                { return symbol(sym.SEMI); }
● This matches the semi-colon input symbol only 

if the scanner is in its start state “YYINITIAL”
● When the symbol is matched, the scanner 

function returns the CUP symbol sym.SEMI



  

JFlex and CUP

● Download CUP .jar
– http://www2.cs.tum.edu/projects/cup/java-cup-11a.jar

● To compile a CUP file:
– java -jar /location-of-jar/java-cup-11a.jar file.cup

● This will create
– parser.java

– sym.java

● Then compile them using
– javac parser.java

– javac sym.java

http://www2.cs.tum.edu/projects/cup/java-cup-11a.jar
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