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Search for Games
• Following this lecture you should be able to: 

• Understand the search process in games 

• How an AI decides on the best moves to make, 
given a search space 

• Implement various evaluation functions  

How to prune a search tree to make sure 
irrelevant paths aren’t followed



Playing Games with AI
• Games such as chess offer pure, abstract competition, 

which makes them popular for AI research 

• The states of a game such as chess are easy to 
represent 

• Actions on the states are restricted to a small number 
of fairly well-defined actions 

• Game playing is an idealisation of worlds in which 
hostile agents act to diminish one’s well being, within 
this world



State Representation: Chess
♜ ♘ ♝ ♕ ♚ ♗ ♞ ♖

♙ ♟ ♙ ♟ ♙ ♟ ♙ ♟

♙ ♟ ♙ ♟ ♙ ♟ ♙ ♟

♜ ♘ ♝ ♕ ♚ ♗ ♞ ♖

Shannon(1950), Programming a Computer for Playing Chess, Philosophical Magazine 41(314)

http://vision.unipv.it/IA1/ProgrammingaComputerforPlayingChess.pdf


Why is chess important to 
AI?

• A chess-playing machine would be an existence of the 
proof of a machine doing something thought to require 
intelligence 

• Simplicity of rules combined with the programmable 
states of the world means that this can be represented 
as a search problem through a space of all possible 
game positions 

• The representation of the game can be correct in every 
possible way, unlike other similar problems e.g fighting a 
war



Why is chess important to 
AI?

• The introduction of an opponent brings uncertainty to the search space 

• Opponent will attempt to make the best move possible 

• Search for games is hard to solve 

• Chess has an average branching factor of 35 

• Games go on to roughly 50 moves per player 

• Search tree has around 35100 nodes 

• The uncertainty in this is choosing the best move given all combinations 

• We can’t search through all possible solutions in a reasonable time 

• We must guess based upon past experiences



Decision Making in 
 Two-Player Games

• Consider a two player game, with players named MAX & MIN 

• MAX moves first, and take turns moving until the game is over 

• At the end of the game, point are awarded to the winning player 

• We can define a game as a search problem as follows: 

• Initial state: Board position and whose move it is 

• Set of actions: Legal moves a player can make 

• Terminal test: Check if the game is over 

• Set of utility functions: Numeric value of the outcome of the game: +1, 
0, -1



Strategy
• In normal search, MAX would search for moves that 

lead to a winning state 

• MIN however will interfere with this 

• MAX requires a strategy to win, regardless of MIN’s 
actions 

• MAX will attempt to make the correct move 
corresponding to the actions of MIN



Noughts and Crosses



Minimax Algorithm
• Five steps: 

1. Generate the whole game tree, down to terminal states 

2. Apply the utility function to each terminal state to get its value 

3. Use this utility value of each terminal to determine the utility 
value of its parent nodes 

4. Continue backing up the values from the leaf nodes towards 
the root, one layer at a time 

5. Eventually we will reach the root of the tree. Now MAX must 
choose the root that maximises the utility value. This is called 
the minimax decision.



Trivial Game Tree

A1
A2

A3

A11 A12
A13 A21 A22

A23 A31 A32
A33

3 12 8 2 4 6 14 5 2

MAX’s move

MIN’s !
move

3 2 2

3



Minimax Algorithm: 
Pseudocode

MiniMax-Decision( game ):!
! for each action in actions( game ): 
  state = apply( action, game ) 
  value[ action ] = MiniMax-Value( state, game) 
 return action with the highest value[ action ]!
!
MiniMax-Value( state, game ): 
 if state == gameOver: // is a leaf node 
  return utility-value( state ) 
!
 else if state == maxNode: // MAX’s move 
  return highest MiniMax-Value of successors( state, game ) 
  
 else: // MIN’s move  
  return lowest MiniMax-Value of successors( state, game ) 
!



Minimax Algorithm: 
Properties

• If the maximum depth of the tree is m, and there are b legal 
moves at each point, then the time complexity is O( bm ) 

• Impractical for real games 

• Depth-first search algorithm 

• Implementation uses recursion instead of a queue 

• Space requirements are linear in m and b 

• Algorithm is basis for more realistic methods 

• Basis for mathematical analysis of games



Overcoming Impracticalities
• Minimax assumes that a program must search all the way 

to terminal states 

• This isn’t practical 

• Shannon proposed that program should cut off the search 
earlier and apply a heuristic evaluation function 

• Minimax is altered in two ways: 

1. Utility function replaced by evaluation function EVAL 

2. Terminal test is replaced by cutoff test CUTOFF-TEST



Evaluation Function
• Estimates expected utility of the game from a given 

position 

• Not new, take chess for example with its material 
values of pieces 

• Quality of game-playing program dependent upon 
evaluation function 

• How do we measure quality? 



Measuring Quality of 
Evaluation Function

1. EVAL must agree with utility on terminal states 

2. EVAL must not take too long 

3. EVAL must reflect chances of winning



Cutting Off Search
• Set a depth limit - depth-limited search 

• Depth is chose to ensure game does not take to 
long 

• Iterative deepening is a more robust approach 

• When time runs out, program returns move 
selected by the deepest completed search



Negative Consequence of 
Cutting Off Search

• Consider material advantage of chess:

♔

♟ ♕ ♘ ♜

♟ ♞ ♕ ♟ ♙

♟ ♟

♟ ♝ ♟ ♙ ♝

♞ ♖ ♚ ♙

Suppose search reaches limit at  
following position 
!
EVAL( White ) = 28 
EVAL( Black ) = 25 
!
• White ahead by a knight 
• Black to move 
• Black captures white queen 
• No loss in return 
• In reality, black gains advantage 
• Evaluation function does  
    not reflect this



Pruning the Search Tree
• Take our chess example: 

• One can search ~1000 moves per second 

• If we take 150 seconds per move we can look at 
150,000 positions 

• Chess has a branching factor of ~35 

• We will only be able to look ahead 3 or 4 ply 

• Average humans plan ahead 6 to 8 ply



Alpha-beta Pruning

• Returns the same move as minimax,  

• Prunes branches that cannot possibly influence 
the final decision



Alpha-beta Pruning

A1
A2

A3

A11 A12
A13 A21 A22

A23 A31 A32
A33

3 12 8 2 14 5 2

MAX’s move

MIN’s !
move

3

≤ 3 ≤ 2 ≤ 14≤ 523



Alpha-beta Pruning:  
General Principle

• Consider a node n in the tree 

• If a player has a better choice m either at the 
parent node of n or at any point further up, then n 
will never be reached in actual play 

• So once we know enough about n to reach this 
conclusion, we prune it.



Summary

• Search process in games 

• Evaluation function for moves in a game 

• Pruning branches of a search tree


