
Algorithms for Data
Structures:

Uninformed Search
Phillip Smith
19/11/2013

Representations for
Reasoning

• We know (at least) two models of a world:

• A model of the static states of the world

• A model of the effects of actions on the first
model

A Static World

B2

B1

B3

Effects of Actions
A B C

A

B C
A

B C

A

B

C

A

B

C

A B

C

A B

C

stack(A, B)

stack(A, C)

stack(B, A)

stack(B, C)

stack(C, A)

stack(C, B)

Decision Making

• “It is easy to choose among options when one
appears better than all of the rest. But when you
find things hard to compare, then you may have to
deliberate.” - Minsky (2006)

• We need to know about goals and sub-goals

Search Applications

• Simple social networking

• Searching the internet

• Playing games against an AI opponent: Chess

• Route finding: Robot navigation

Using a State-space Graph
to Find Plans

1. Select a goal state

2. Identify the current state

• Finding a solution is simply a case of finding a path
between these two in the state-space graph

Using a State-space Graph
to Find Plans

• The solution or plan is the sequence of labels on
the arcs

• Usually graphs are so large that we can’t hold all
of them explicitly in memory

• There may be many possible paths to a goal state

• We may wish to find the path of least cost or
optimal path

State-space Graphs

• Typically we need to predict the effects of
sequences of actions

• If the number of states of the world is small enough
we can draw a complete state-space graph

Search Trees
• We represent only the explored portion (or less) of

the graph as a search tree:
root node = initial state

leaf nodes = unexpanded states

A

DCB

GFE JIH

goal state

Search Trees
• Blocks world example:

• B = node

• state representation: ((B1 B2) (B3))

• parent node: ((B1) (B2) (B3))

• operator (action): stack(B1, B2)

• depth: 1

• path cost: 1

Search Trees: General Rules

• Each node has only one parent

• If a node can be reached by two paths, we only
remember the parent on the path with the lowest
cost

Generating Search Trees
• We generate the search tree by expanding nodes

• Expanding a node ≡ generating its children

!

!

• Different search techniques essentially correspond
to different ways of selecting the next node

A

DCB

Breadth-First Search

• Expand the leaf node with the lowest cost path so
far

• Add 1 to the path cost for a node to obtain the path
cost of each of its children

Breadth-First Search
A

DCB

GFE JIH

• Sequence of nodes we expand is: A B C D E F G H I J

• Stop when you expand a node which is a goal node

Level 0

Level 1

Level 2

Breadth-First Search:
Algorithm

• When doing breadth-first search, a queue is an ideal data
structure:

• Add root node to the queue

• Dequeue (remove and inspect) first element from queue

• If it is the goal state: finish!

• If it isn’t expand node to show it’s children, and add to
queue

• Dequeue first element in queue

Repeat

Breadth-First Search:
Pseudocode

breadth-first-search(Tree):
 get root node r
 create a queue Q
 add r to Q
 while Q is not empty:
 t = Q.dequeue()
 if t is goal:
 return t // goal has been reached
 else:
 for all edges e Tree.adjacentEdges(t)
 V = Tree.adjacentVertices(t, e) //list of child nodes from t
 enqueue V onto Q

Breadth-First Search:
Example with Queue

A

CB

GFE
Queue

A

Breadth-First Search:
Example with Queue

A

CB

GFE
Queue

B C

Breadth-First Search:
Example with Queue

A

CB

GFE
Queue

C E F G

Breadth-First Search:
Example with Queue

A

CB

GFE
Queue

E F G

Breadth-First Search:
Example with Queue

A

CB

GFE
Queue

F G

Breadth-First Search:
Example with Queue

A

CB

GFE
Queue

G

G

Breadth-First Search:
Properties

• Guaranteed to find the shortest path

• Memory intensive if the space is large

• Space complexity O(bd)

• Time complexity O(bd)

• b = branching factor

• The number of children at each node

• When not uniform, this can be averaged

• d = depth of shallowest goal state

Table from Russell & Norvig (1995), Artificial Intelligence: A Modern Approach

Depth-First Search

• Generate the successors of the leaf-node with the
highest cost path so far

• Add 1 to a node’s path cost to obtain the path cost
of its children

Depth-First Search
A

DCB

GFE JIH

• Sequence of nodes we expand is: A B E F C G D H I J

• Stop when you expand a node which is a goal node

Depth-First Search:
Algorithm

• An ideal data structure for depth-first search is a stack

• This adapts the breadth-first search algorithm we saw
previously

• The nature of a stack changes the behaviour of the search

• Instead of adding items to examine to the end of a queue
we add them to the top of a stack

• We pop the top item on the stack for each iteration of the
algorithm

Depth-First Search:
Pseudocode

depth-first-search(Tree):
 get root node r
 create a stack S
 push r to S
 while S is not empty:
 t = S.pop()
 if t is goal:
 return t // goal has been reached
 else:
 for all edges e Tree.adjacentEdges(t)
 V = Tree.adjacentVertices(t, e) //list of child nodes from t
 push V onto S

Depth-First Search: Example
with Stack

A

CB

GFE

Stack

A

Depth-First Search: Example
with Stack

A

CB

GFE

Stack

C

B

Depth-First Search: Example
with Stack

A

CB

GFE

Stack

C

F

E

Depth-First Search: Example
with Stack

A

CB

GFE

Stack

G

G

Depth-First Search:
Properties

• Not guaranteed to find any path to a goal state

• Memory efficient

• Space complexity ≈ O(bm)

• Time complexity ≈ O(bm)

• m = maximum depth of search tree (can’t be ∞)

Depth-Limited Search
• To guarantee that search will terminate (either in failure or

success) we can put a limit on how deep DFS searches

• Depth-limited search does DFS to a depth limit h

• If goal’s depth ≤ h then DLS is complete (guaranteed to
find the solution

• Still not guaranteed to find the shortest path

• Space complexity O(bd)

• Time complexity O(bd)

Depth-First Iterative
Deepening

• Extends the idea of depth-limited search

• Start by doing DLS with h = 1

• Then we reset:

• OPEN = [initial-state]

• CLOSED = []

• Increase h by 1

• Repeat DLS with new limit

• Iterate, increasing h by 1 each time

Depth-First Iterative Search

• Looks wasteful

• However, is better than either BFS or DFS

• Although it always expands many nodes more than
once, it still spends most of its time at the bottom
level

Depth-First Iterative
Deepening: Explanation

• At depth d there are b
d
 nodes

• Total nodes to depth d in DLS is:

• 1 + b + b
2
 + b

3
 + … + b

d-1
 + b

d

• The total number of expansions after d iterations will be:

• (d+1) 1 + (d) b + (d - 1) b
2
 + … (2) b

d-1
 + (1) b

d

• The sum of the first d expansions will be insignificant compared to b
d

• e.g b =10 d = 5

• 6 + 50 + 400 + 3000 + 20000 + 100000 = 123,456

• So time complexity is O (b
d
)

• Same as BFS, better than DFS

Depth-First Iterative
Deepening: Explanation

• As it’s doing depth-first search only one path is
maintained. Therefore the space complexity is the same as
for DFS: O(bd)

• Finally, because all the nodes are expanded at each level
DFID is complete (like DLS)

• As the limit is increased by 1 each iteration the algorithm is
guaranteed to find the shortest path to the GOAL first, so it
is optimal.

• Curiously, DFID is the best uninformed search algorithm in
all respects

Analysing Search Algorithms

• Clearly the performance of any algorithm on a
particular problem depends on properties of the
problem domain, and of the representation you
choose

• But, we can place some general bounds on the
performance of algorithms too

Analysing Search Algorithms
• Completeness - A search algorithm is complete if it is

guaranteed to find a solution when at least one solution exists!

• Optimality - A search algorithm is optimal if it is guaranteed to
find the best solution when there is more than one!

• Space Complexity - The order of storage space required at
any point during the search process, in order to find a solution
in the worst case (number of nodes we must store)!

• Time Complexity - The order of computation required during
the search process to find a solution in the worst case (number
of expansions)

Comparing Uninformed
Search Algorithms

Strategy Complete? Optimal? Time
Complexity

Space
Complexity

BFS Yes Yes O(bd) O(bd)

DFS No No O(bm) O(bm)

DLS Yes if h ≤ d No O(bh) O(bh)

DFID Yes Yes O(bd) O(bd)

d = depth of shallowest goal state
m = maximum depth of search tree (could be ∞)

h = user defined limit on search

Summary of Uninformed
Search Algorithms

• Uninformed Search - sometimes called blind search

• Systematic search with no information about the current distance (cost) to the goal

• So far we have seen

• Breadth-first: guaranteed to find the shallowest goal state in the search tree, but
very expensive w.r.t space and time

• Depth-first: Less storage space required than BFS, but no guarantees, and worst
case time complexity is poorer

• Depth-limited: Weak guarantee of completeness. Known bound on time complexity
and good space complexity

• DFID: The best of a bad bunch. Low storage space, complete and optimal,
however exponential time complexity

