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Representations for 
Reasoning

• We know (at least) two models of a world: 

• A model of the static states of the world 

• A model of the effects of actions on the first 
model
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Effects of Actions
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Decision Making

• “It is easy to choose among options when one 
appears better than all of the rest. But when you 
find things hard to compare, then you may have to 
deliberate.” - Minsky (2006) 

• We need to know about goals and sub-goals



Search Applications

• Simple social networking 

• Searching the internet 

• Playing games against an AI opponent: Chess 

• Route finding: Robot navigation



Using a State-space Graph 
to Find Plans

1. Select a goal state 

2. Identify the current state 

• Finding a solution is simply a case of finding a path 
between these two in the state-space graph



Using a State-space Graph 
to Find Plans

• The solution or plan is the sequence of labels on 
the arcs 

• Usually graphs are so large that we can’t hold all 
of them explicitly in memory 

• There may be many possible paths to a goal state 

• We may wish to find the path of least cost or 
optimal path



State-space Graphs 

• Typically we need to predict the effects of 
sequences of actions 

• If the number of states of the world is small enough 
we can draw a complete state-space graph



Search Trees
• We represent only the explored portion (or less) of 

the graph as a search tree:
root node = initial state

leaf nodes = unexpanded states
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Search Trees
• Blocks world example: 

• B = node 

• state representation: ( ( B1 B2 ) ( B3 ) ) 

• parent node: ( ( B1 ) ( B2 ) ( B3 ) ) 

• operator ( action ): stack( B1, B2 ) 

• depth: 1 

• path cost: 1 



Search Trees: General Rules

• Each node has only one parent 

• If a node can be reached by two paths, we only 
remember the parent on the path with the lowest 
cost



Generating Search Trees
• We generate the search tree by expanding nodes 

• Expanding a node ≡ generating its children 

!

!

• Different search techniques essentially correspond 
to different ways of selecting the next node
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Breadth-First Search

• Expand the leaf node with the lowest cost path so 
far 

• Add 1 to the path cost for a node to obtain the path 
cost of each of its children



Breadth-First Search
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• Sequence of nodes we expand is: A B C D E F G H I J 

• Stop when you expand a node which is a goal node
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Breadth-First Search: 
Algorithm

• When doing breadth-first search, a queue is an ideal data 
structure: 

• Add root node to the queue 

• Dequeue ( remove and inspect ) first element from queue 

• If it is the goal state: finish! 

• If it isn’t expand node to show it’s children, and add to 
queue 

• Dequeue first element in queue

Repeat



Breadth-First Search: 
Pseudocode

breadth-first-search(Tree): 
 get root node r 
 create a queue Q 
 add r to Q 
 while Q is not empty: 
  t = Q.dequeue() 
  if t is goal: 
   return t // goal has been reached 
  else: 
   for all edges e Tree.adjacentEdges(t) 
    V = Tree.adjacentVertices(t, e) //list of child nodes from t 
    enqueue V onto Q 
 



Breadth-First Search: 
Example with Queue
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Breadth-First Search: 
Example with Queue
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Breadth-First Search: 
Example with Queue
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Breadth-First Search: 
Example with Queue
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Breadth-First Search: 
Example with Queue
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Breadth-First Search: 
Example with Queue
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Breadth-First Search: 
Properties

• Guaranteed to find the shortest path 

• Memory intensive if the space is large 

• Space complexity O( bd ) 

• Time complexity O( bd ) 

• b = branching factor 

• The number of children at each node 

• When not uniform, this can be averaged 

• d = depth of shallowest goal state



Table from Russell & Norvig (1995), Artificial Intelligence: A Modern Approach



Depth-First Search

• Generate the successors of the leaf-node with the 
highest cost path so far 

• Add 1 to a node’s path cost to obtain the path cost 
of its children



Depth-First Search
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• Sequence of nodes we expand is: A B E F C G D H I J 

• Stop when you expand a node which is a goal node



Depth-First Search: 
Algorithm

• An ideal data structure for depth-first search is a stack 

• This adapts the breadth-first search algorithm we saw 
previously 

• The nature of a stack changes the behaviour of the search 

• Instead of adding items to examine to the end of a queue 
we add them to the top of a stack 

• We pop the top item on the stack for each iteration of the 
algorithm



Depth-First Search: 
Pseudocode

depth-first-search(Tree): 
 get root node r 
 create a stack S 
 push r to S 
 while S is not empty: 
  t = S.pop() 
  if t is goal: 
   return t // goal has been reached 
  else: 
   for all edges e Tree.adjacentEdges(t) 
    V = Tree.adjacentVertices(t, e) //list of child nodes from t 
    push V onto S 
 



Depth-First Search: Example 
with Stack
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Depth-First Search: Example 
with Stack
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Depth-First Search: Example 
with Stack
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Depth-First Search: Example 
with Stack
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Depth-First Search: 
Properties

• Not guaranteed to find any path to a goal state 

• Memory efficient 

• Space complexity ≈ O( bm ) 

• Time complexity ≈ O( bm ) 

• m = maximum depth of search tree (can’t be ∞)



Depth-Limited Search
• To guarantee that search will terminate (either in failure or 

success) we can put a limit on how deep DFS searches 

• Depth-limited search does DFS to a depth limit h 

• If goal’s depth ≤ h then DLS is complete (guaranteed to 
find the solution 

• Still not guaranteed to find the shortest path 

• Space complexity O( bd ) 

• Time complexity O( bd )



Depth-First Iterative 
Deepening

• Extends the idea of depth-limited search 

• Start by doing DLS with h = 1 

• Then we reset: 

•  OPEN = [initial-state]  

• CLOSED = [] 

• Increase h by 1 

• Repeat DLS with new limit 

• Iterate, increasing h by 1 each time



Depth-First Iterative Search

• Looks wasteful 

• However, is better than either BFS or DFS 

• Although it always expands many nodes more than 
once, it still spends most of its time at the bottom 
level



Depth-First Iterative 
Deepening: Explanation

• At depth d there are b
d
 nodes 

• Total nodes to depth d in DLS is: 

• 1 + b + b
2
 + b

3
 + … + b

d-1
 + b

d 

• The total number of expansions after d iterations will be: 

• ( d+1 ) 1 + ( d ) b + ( d - 1 ) b
2
 + … (2) b

d-1
 + (1) b

d 

• The sum of the first d expansions will be insignificant compared to b
d
 

• e.g b =10    d = 5 

• 6 + 50 + 400 + 3000 + 20000 + 100000 = 123,456 

• So time complexity is O ( b
d
 ) 

• Same as BFS, better than DFS



Depth-First Iterative 
Deepening: Explanation

• As it’s doing depth-first search only one path is 
maintained. Therefore the space complexity is the same as 
for DFS: O( bd ) 

• Finally, because all the nodes are expanded at each level 
DFID is complete (like DLS) 

• As the limit is increased by 1 each iteration the algorithm is 
guaranteed to find the shortest path to the GOAL first, so it 
is optimal. 

• Curiously, DFID is the best uninformed search algorithm in 
all respects



Analysing Search Algorithms

• Clearly the performance of any algorithm on a 
particular problem depends on properties of the 
problem domain, and of the representation you 
choose 

• But, we can place some general bounds on the 
performance of algorithms too



Analysing Search Algorithms
• Completeness - A search algorithm is complete if it is 

guaranteed to find a solution when at least one solution exists!

• Optimality - A search algorithm is optimal if it is guaranteed to 
find the best solution when there is more than one!

• Space Complexity -  The order of storage space required at 
any point during the search process, in order to find a solution 
in the worst case (number of nodes we must store)!

• Time Complexity -  The order of computation required during 
the search process  to find a solution in the worst case (number 
of expansions)



Comparing Uninformed 
Search Algorithms

Strategy Complete? Optimal? Time 
Complexity

Space 
Complexity

BFS Yes Yes O( bd ) O( bd)

DFS No No O( bm ) O( bm )

DLS Yes if h ≤ d No O( bh ) O( bh )

DFID Yes Yes O( bd ) O( bd )

d = depth of shallowest goal state 
m = maximum depth of search tree (could be ∞) 

h = user defined limit on search 



Summary of Uninformed 
Search Algorithms

• Uninformed Search - sometimes called blind search 

• Systematic search with no information about the current distance (cost) to the goal 

• So far we have seen 

• Breadth-first: guaranteed to find the shallowest goal state in the search tree, but 
very expensive w.r.t space and time 

• Depth-first: Less storage space required than BFS, but no guarantees, and worst 
case time complexity is poorer 

• Depth-limited: Weak guarantee of completeness. Known bound on time complexity 
and good space complexity 

• DFID: The best of a bad bunch. Low storage space, complete and optimal, 
however exponential time complexity 


