Algorithms for Data
Structures:
Uninformed Search

Phillip Smith
19/11/2013

Representations for
Reasoning

 We know (at least) two models of a world:

e A model of the static states of the world

e A model of the effects of actions on the first
model

A Static World

B1

B2 B3

e

Fffects of Actions

stack(A, B)

stack(A, C)

Decision Making

* "/t IS easy to choose among options when one
appears better than all of the rest. But when you
find things hard to compare, then you may have to
deliberate.” - Minsky (2006)

 We need to know about goals and sub-goals

Search Applications

Simple social networking
Searching the internet
Playing games against an Al opponent: Chess

Route finding: Robot navigation

Using a State-space Graph
to FInd Plans

1. Select a goal state
2. ldentity the current state

* Finding a solution is simply a case of finding a path
between these two In the state-space graph

Using a State-space Graph
to FInd Plans

e The solution or plan is the sequence of labels on
the arcs

e Usually graphs are so large that we can’t hold all
of them explicitly in memory

* [here may be many possible paths to a goal state

e \We may wish to find the path of least cost or
optimal path

State-space Graphs

e Jypically we need to predict the effects of
sequences of actions

* |t the number of states of the world is small enough
we can draw a complete state-space graph

Search Trees

* We represent only the explored portion (or less) of
the graph as a search tree:

= root node = initial state

\\ ~ goal state

leaf nodes = unexpanded states

Search Trees

* Blocks world example:
B =node
e state representation: ((B1 B2) (B3))
 parentnode: ((B1)(B2)(B3))
e operator (action): stack(B1, B2)
e depth: 1

e path cost: 1

Search Trees: General Rules

 Each node has only one parent

* |f a node can be reached by two paths, we only
remember the parent on the path with the lowest

COSt

Generating Search Trees

 We generate the search tree by expanding nodes

 Expanding a node = generating its children

A

SN

B C D

e Different search technigues essentially correspond
to different ways of selecting the next node

Breadth-First Search

 Expand the leaf node with the lowest cost path so
far

 Add 1 to the path cost for a node to obtain the path
cost of each of its children

Breadth-First Search

Level O A
B C D

Level 1

/ AN

Level 2 E F G H I J

 Sequence of nodeswe expandis: ABCDEFGHIJ

e Stop when you expand a node which is a goal node

Breadth-First Search:
Algorithm

 When doing breadth-first search, a gueue is an ideal data
structure:

* Add root node to the queue

 Dequeue (remove and inspect) first element from queue

e |fitis the goal state: finish!

e |fitisn’t expand node to show it's children, and add to
queue

 Dequeue first element in queue——

Repeat >

Breadth-First Search:
Pseudocode

breadth-first-search(Tree):
get root node r
create a queue Q
add r to Q
while Q is not empty:
t = Q.dequeue()
if tis goal:
return t // goal has been reached
else:
for all edges e Tree.adjacentEdges(t)
V = Tree.adjacentVertices(t, e) //list of child nodes from t
engueue V onto Q

Breadth-First Search:
Example with Queue

A
B C

Queue

Breadth-First Search:
Example with Queue

A
B C

Queue

Breadth-First Search:
Example with Queue

A
B C

Breadth-First Search:
Example with Queue

A
B C

Breadth-First Search:
Example with Queue

A
B C

Queue

Breadth-First Search:
Example with Queue

A
B C

Breadth-First Search:
Properties

« (Guaranteed to find the shortest path
« Memory intensive if the space is large
« Space complexity O(b?)
« Time complexity O(b?)
* b = branching factor
* The number of children at each node
 When not unitorm, this can be averaged

e d = depth of shallowest goal state

Depth Nodes Time Memory
0 1 1 millisecond 100 bytes
2 111 .1 seconds Il kilobytes
4 11,111 11 seconds 1 megabyte
6 10° 18 minutes 111l megabytes
8 108 31 hours 11 gigabytes
10 10'0 128 days 1 terabyte
12 10% 35 years 111 terabytes
14 101 3500 years [1,111 terabytes
Figure 312 Time and memory requirements for breadth-first search. The figures shown
assume branching factor b = 10; 1000 nodes/second; 100 bytes/node.

Table from Russell & Norvig (1995), Artificial Intelligence: A Modern Approach

Depth-First Search

e (Generate the successors of the leaf-node with the
highest cost path so far

 Add 1to a node's path cost to obtain the path cost
of its children

Depth-First Search

/

E

/5%

N

| J

 Sequence of nodes we expandis: ABEFCGDHIJ

e Stop when you expand a node which is a goal node

Depth-First Search:
Algorithm

An ideal data structure for depth-first search is a stack

This adapts the breadth-tirst search algorithm we saw
previously

The nature of a stack changes the behaviour of the search

Instead of adding items to examine to the end of a queue
we add them to the top of a stack

We pop the top item on the stack for each iteration of the
algorithm

Depth-First Search:
Pseudocode

depth-first-search(Tree):
get root node r
create a stack S
pushrtoS
while S is not empty:
t = S.pop()
if tis goal:
return t // goal has been reached
else:
for all edges e Tree.adjacentEdges(t)
V = Tree.adjacentVertices(t, e) //list of child nodes from t

push V onto S

Depth-First Search: Example
with Stack

Depth-First Search: Example
with Stack

Depth-First Search: Example
with Stack

Depth-First Search: Example
with Stack

Depth-First Search:
Properties

 Not guaranteed to find any path to a goal state
 Memory efficient

e Space complexity = O(bm)

 Time complexity =~ O(bm)

* M = maximum depth of search tree (can't be «)

Depth-Limited Search

To guarantee that search will terminate (either in failure or
success) we can put a limit on how deep DFS searches

Depth-limited search does DFS to a depth limit A

It goal’'s depth < h then DLS is complete (guaranteed to
find the solution

Still not guaranteed to find the shortest path
e Space complexity O(bd)

e Time complexity O(b9)

Depth-rirst lterative
Deepening

e Extends the idea of depth-limited search
e Start by doing DLS with h = 1
* Then we reset:

« OPEN = [initial-state]

o« CLOSED =]

* Increase h by 1

e Repeat DLS with new limit

 |terate, increasing h by 1 each time

Depth-First Iterative Search

e | ooks wasteful
e However, is better than either BFS or DFS

e Although it always expands many nodes more than
once, it still spends most of its time at the bottom
level

Depth-rirst lterative
Deepening: Explanation

At depth d there are bOI nodes
Total nodes to depth d in DLS is:
. 1+b+b2+b3+...+bd_1+bOI
The total number of expansions after d iterations will be:
e (d41)1+(d)b+(d-1)b +...(2b" +(1)b
The sum of the first d expansions will be insignificant compared to bOI
* egb=10 d=5
* 6+ 50 + 400 + 3000 + 20000 + 100000 = 123,456

e S0 time complexity is O (bOI)

e Same as BFS, better than DFS

Depth-rirst lterative
Deepening: Explanation

As it's doing depth-first search only one path is

maintained. Therefore the space complexity is the same as
for DFS: O(bd)

Finally, because all the nodes are expanded at each level
DFID is complete (like DLS)

As the limit is increased by 1 each iteration the algorithm Is
guaranteed to find the shortest path to the GOAL first, so it
IS optimal.

Curiously, DFID is the best uninformed search algorithm in
all respects

Analysing Search Algorithms

* Clearly the performance of any algorithm on a
particular problem depends on properties of the
oroblem domain, and of the representation you
choose

* But, we can place some general bounds on the
performance of algorithms too

Analysing Search Algorithms

‘ Completeness - A search algorithm is complete if it is
guaranteed to find a solution when at least one solution exists

» Optimality - A search algorithm is optimal if it is guaranteed to
find the best solution when there is more than one

-+ Space Complexity - The order of storage space required at
any point during the search process, in order to find a solution
in the worst case (number of nodes we must store)

» Time Complexity - The order of computation required during
the search process to find a solution in the worst case (number
of expansions)

Comparing Uninformeo
Search Algorithms

Time Space
Complexity Complexity

Strategy Complete? Optimal?

BES Yes Yes O(bd) O(bd)
DES No No O(bm) O(bm)
DLS Yesifh<d No O(b") O(bh)
DFID Yes Yes O(bd) O(bd)

d = depth of shallowest goal state
m = maximum depth of search tree (could be)
h = user defined limit on search

Summary of Uninformead
Search Algorithms

Uninformed Search - sometimes called blind search

Systematic search with no information about the current distance (cost) to the goal

So far we have seen

Breadth-first: guaranteed to find the shallowest goal state in the search tree, but
very expensive w.r.t space and time

Depth-first: Less storage space required than BFS, but no guarantees, and worst
case time complexity is poorer

Depth-limited: Weak guarantee of completeness. Known bound on time complexity
and good space complexity

DFID: The best of a bad bunch. Low storage space, complete and optimal,
however exponential time complexity

